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Abstract -
Different factors combined invariably cause construction

fatalities at any time, most of which could be avoided if work-
ers followed the on-site regulatory rules. However, compli-
ance of regulatory rules is not strictly enforced among work-
ers due to all kinds of reasons, even after prior education
and training. To address the difficulties of on-site safety
management, this paper proposes a graph-based time se-
ries analysis framework to dynamically integrate visual and
linguistic information for on-site occupational hazard iden-
tification. A vision-based scene information understanding
approach is introduced to process on-site images via a combi-
nation of deep learning-based object detection and individual
detection, together with a novel dynamic graph structure to
represent time-series information for integrated reasoning
of hazards identification. As a case study, the hazards of
grinder operation were successfully identified in the experi-
ments with high accuracy.
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1 Introduction
The construction industry is one of the fields with the

highest number of occupational accidents. According to
the United States’ Bureau of Labor Statistics (BLS), the
number of construction fatalities in the U.S. has increased
from 924 to 1,066 between 2015 and 2019 [1]. Similarly,
in Japan, there were 1,522 construction fatalities between
the period 2015-2019 [2].
As the construction is extremely vulnerable to the inter-

ference of various subjective and objective factors, once
any sudden problem occurs it will pose a potential threat
to the life and property safety of the on-site construction
workers. Grinding is a commonly used operation on con-
struction sites to produce smooth surfaces, and can also be
used to fabricate workpieces such as smoothing welds and
performing finishing operations on workpiece surfaces.
When using a grinder, the grinding disc generates high
rotational speeds, which can be hazardous if the operator
lacks expertise and the operation does not follow on-site

regulatory rules. Eye injuries would be a possible seri-
ous consequence. According to the National Institute for
Occupational Safety and Health (NIOSH), an average of
2,000 United States workers require medical treatment for
job-related eye injuries every day [3]. The reasons cited
for the majority of eye injuries include the non-wearing of
available eye protection or wearing of inappropriate eye
protection for the current task [4]. OSHA indicates the
workers shall be ensured to wear eye or face protection
when exposed to eye or face hazards from flying particles,
molten metal, liquid chemicals, acids or caustic liquids,
chemical gases or vapors, or potentially injurious light ra-
diation [5]. Additionally, fine dust and particles, gases
and vapors can be produced when using a grinder. Silica
dust from bricks can cause lung and airway diseases such
as emphysema, bronchitis, silicosis, and may increase the
risk of cancer. Personal protective equipment (PPE), such
as respirators or dust masks, are used to controls these haz-
ards [6]. On the other hand, improper handling grinder
can be a dangerous power tool, hands and forearms injure
results when the workers using the grinder loses control
of it. OSHA indicates the workers shall use two hands
to operate the grinder. One hand should grip the handle
and dead-man switch (if provided), while the other hand
supports the weight of the tool [7].
However, the construction workers do not precisely fol-

low the on-site safety regulations due to various reasons,
even after prior education and training. Therefore, the de-
velopment of an automated on-site occupational hazards
identification system is needed to address the increasing
importance of safety management, which is capable of
automatically carrying out dynamic identification of oc-
cupational hazards and effectively preventing various ac-
cidents.
To this end, this paper proposes a graph-based time se-

ries analysis framework to dynamically integrate visual
and linguistic information for on-site occupational haz-
ards identification. (1) A vision-based scene information
understanding approach is introduced to process on-site
images via a combination of deep learning-based object
detection and individual detection. (2) An automated rea-
soning is developed to encode regulatory information into
graph structure and perform occupational hazards identifi-
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cation based on graph structure analysis between extracted
scene information and regulatory information. The pro-
posed model was able to identify the hazards of grinder
operation with high accuracy in the experiments.

2 Related works
Deep learning-based object detection algorithms have

shown remarkable performance on most visual tasks in the
architecture, engineering, and construction (AEC) indus-
try, and there has been a significant amount of research
on vision-based automatic occupational hazards identifi-
cation approaches using object detection [8, 9, 10]. Fang
et al. [8] proposed an object detection-based method using
Faster R-CNN to automatically detect construction work-
ers’ NHU. A total of 81,000 image frames were collected
from various construction sites as a training dataset and
the bounding boxes that surround workers in the images
were annotated as the ground truth to train the model. Wu
et al. [9] deployed Single Shot Multibox Detector (SSD)
with presented reverse progressive attention (RPA) for
NHU identification. A benchmark dataset GDUT-HWD
was created by downloading Internet images retrieved by
search engines to train the SSD-RPA model. In contrast
to [8], only the head regions of workers were annotated as
the ground truth. Nath et al. [10] introduced and tested
models built on YOLOv3 architecture to verify PPE (hard
hat and vest) compliance of workers. Three approaches
were verified concerning different classifiers (e.g., deci-
sion tree, VGG-16, ResNet-50, Xception, or Bayesian).

Recently, deep learning-based pose estimation algo-
rithms have achieved impressive results in unconstrained
environments, showing the potential for worker detec-
tion in complex on-site environments. Compared to ob-
ject detection-based approaches, human skeletons provide
more fine-grained information about a person (e.g., loca-
tion and visibility), especially in the case of occlusion.
Considering such benefits, several efforts are also explor-
ing the integration of object recognition and pose estima-
tion for occupational hazards identification [11, 12]. Chen
et al. [11] introduced a vision-based approach to detect the
proper use of multi-class radiation PPE in nuclear power
plants via a combination of deep learning-based object
detection and pose estimation using Euclidean distance
between bounding boxes of detected PPE and the neck ge-
ometric relationships analysis. Xiong et al. [12] presented
an extensible pose-guided anchoring framework aimed at
multi-class PPE compliance detection. A pose estimator
was deployed to detect individuals and provide joint-level
anchors for guiding the localization of different PPE items.

Vision-based approaches have been widely used to au-
tomatically identify occupational hazards as introduced
above. However, as regulation rules may change at any
time in practical engineering, current vision-based ap-

proacheswill be significantly reduced in practicality due to
their inability to adapt to adjustments in practice. A uni-
fied model integrating visual and linguistic information
would enable the automatic and effective identification of
hazards in compliance with regulatory rules even when
changes are made to them. Several explorations to this
end have already been carried out [13, 14, 15]. Xiong
et al. [13] developed an Automated Hazards Identifica-
tion System (AHIS) to evaluate the operation descriptions
generated from site videos against the safety guidelines
extracted from the textual documents with the assistance
of the ontology of construction safety. Two types of cru-
cial hazards, i.e., failing to wear a hard hat and walking
beneath the cane, were successfully identified. Fang et
al. [14] integrated computer vision algorithms with ontol-
ogy models to develop a knowledge graph that consists of
an ontological model for hazards, knowledge extraction,
and knowledge inference for hazard identification, which
can automatically identify falls from heights hazards in
varying contexts from images. As a previous exploration
of this work, we provided a novel solution to identify
improper use of PPE by the combination of deep learning-
based object detection and individual detection using geo-
metric relationships analysis and presented a hierarchical
scene graph structure that enables the conditional reason-
ing for automated hazards identification to address differ-
ent requirements in each zone of construction sites [15].

3 Methodology
In this section, the proposed dynamic graph-based

framework for automated occupational hazards identifi-
cation is described in detail.

3.1 Scene information extraction

We propose a novel scene understanding approach em-
ploying scene graph as the basic notion of information
representation structure to extract visual information from
images, the base framework of which has been presented
in our previous work [15]. An entity extractor for pro-
cessing images obtained from on-site surveillance cam-
eras is developed. For each image, individual(s) are
detected, together with their body joint positions, using
OpenPose [16]. Meanwhile, objects (e.g., PPE, tools) are
recognized and localized by training an object detection
model based on YOLOv4 [17].
We first associate the detected objects with the detected

individuals, with the aim of providing a prior knowl-
edge for individual-object relationship analysis and re-
ducing computational complexity. A weighted bipartite
graph is constructed to represent the detected entities and
we perform individual-object association as a minimum
weighted matching in bipartite graphs. Subsequently, we

530



38 Cℎ International Symposium on Automation and Robotics in Construction (ISARC 2021)

analyze the individual-object relationship on the associ-
ated individual-object pairs " , which address two types
of objects in this paper:

• Head protection PPE (hard hats, safety glasses, and
dust masks).

• Grinder

3.1.1 Head protection PPE

For each associated individual and head protection PPE
{8∗, 9∗} ∈ " their relationship is identified by by mea-
suring a distance. We take advantage of the Euclidean
distance among detected neck keypoint (body parts 1 in
Figure 1) and hip keypoints (body parts 8 and 11 in Fig-
ure 1) of 8∗ is as a dynamic reference threshold, which will
keep changing synchronously when the distance between
the individual and the camera changes:

V8∗↔ 9∗ = max(
√
(G (1)
8∗ − G

(8)
8∗ )2 + (H

(1)
8∗ − H

(8)
8∗ )2,√

(G (1)
8∗ − G

(11)
8∗ )2 + (H

(1)
8∗ − H

(11)
8∗ )2) · W

(1)
where W is the scaling coefficient to strike the relationship
analysis for different head protection PPE. For hard hats,
safety glasses, dust masks, and full-face masks, W is set to
0.8, 0.7, 0.6, 0.6, respectively.

Figure 1. Output format of OpenPose.

If the Euclidean distance between the position (G 9∗ , H 9∗ )
of the bounding box of 9∗ and detected neck keypoint (body
parts 1 in Figure 1) of 8∗ is smaller than the reference
threshold V8∗↔ 9∗ , then the relationship between the 8∗ and
9∗ is created; otherwise, even though 9∗ is associated with
8∗, no relationship is created between them:

28∗↔ 9∗ =

{
“F40A” , 8 5 3ℎ (8∗, 9∗) < V8∗↔ 9∗
#/� , >Cℎ4AF8B4

(2)

where

3ℎ (8∗, 9∗) =
√(

G
(1)
8∗ − G 9∗

)2
+

(
H
(1)
8∗ − H 9∗

)2
(3)

and 28∗↔ 9∗ indicates the connection to create the relation-
ship between 8∗ and 9∗ as a semantic phrase (8∗, 28∗↔ 9∗ , 9∗)
(e.g., (?4AB>=, F40A, ℎ0A3 ℎ0C) or not.

3.1.2 Grinder

Currently in this work, two regulatory rules related to
grinder proper use are addressed to create a individual-
grinder relationship:

(1) “Always use two hands when operating a grinder”
Let �6∗ =

(
G6∗ , H6∗ , F6∗ , ℎ6∗

)
be the detected bounding

box of a grinder 6∗ which is associated with the detected
individual 8∗. Firstly, the Euclidean distance from the
left wrist keypoint and right wrist keypoint (body parts 7
and 4 in Figure 1) of 8∗ to the position (G6∗ , H6∗ ) of 6∗ is
calculated (Figure 2):

3; (8∗, 6∗) =
√(

G
(7)
8∗ − G6∗

)2
+

(
H
(7)
8∗ − H6∗

)2
3A (8∗, 6∗) =

√(
G
(4)
8∗ − G6∗

)2
+

(
H
(4)
8∗ − H6∗

)2 (4)

If the grinder is close enough to the wrists, then the
individual is identified as holding the grinder:

ℎ8∗↔6∗ =

{
1 , 8 5 3; (8∗, 6∗) < V8∗↔6∗ >A 3A (8∗, 6∗) < V8∗↔6∗
0 , >Cℎ4AF8B4

(5)
where V8∗↔6∗ is the reference threshold calculated based
on the size of the bounding box of 6∗:

V8∗↔6∗ = max(F6∗ , ℎ6∗ ) (6)

Figure 2. Relationship identification strategies to ad-
dress the rule “Always use two handswhen operating
a grinder”.

If ℎ8∗↔6∗ = 1, then relationship identification needs to
be further performed to identify whether the individual 8∗
is holding the grinder 6∗ using single hand or two hands.
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It’s known that when an object is holding by two hands the
distance between thewrists is small. Thus, the relationship
between 8∗ and 6∗ is identified as follows:

8 5 3;↔A (8∗) < V8∗↔6∗ :
28∗↔ℎ∗

8∗
, ℎ∗8∗ , 2ℎ∗8∗↔6

∗ = “DB4”, “CF> ℎ0=3B”, “>?4A0C4”

>Cℎ4AF8B4 :
28∗↔ℎ∗

8∗
, ℎ∗8∗ , 2ℎ∗8∗↔6

∗ = “DB4”, “B8=6;4 ℎ0=3”, “>?4A0C4”
(7)

where ℎ∗
8∗ indicates the hands status (e.g., two hands,

single hand) when operating a grinder while 28∗↔ℎ∗
8∗

and 2ℎ∗
8∗↔6

∗ create the relationship between 8∗ and
ℎ∗
8∗ , ℎ

∗
8∗ and 6∗, as semantic phrases (8∗, 28∗↔ℎ∗

8∗
, ℎ∗
8∗ ),

(ℎ∗
8∗ , 2ℎ∗8∗↔6

∗ , 6∗), respectively (e.g., the relationship
(?4AB>=, DB4, CF> ℎ0=3B), (CF> ℎ0=3B, >?4A0C4, 6A8=34A)
is created in Figure 2)
(2) “Never operate a grinder near face”
For the detected individual 8∗ and the associated grinder

6∗, the Euclidean distance from the neck keypoint (body
part 1 in Figure 1) of 8∗ to the position (G6∗ , H6∗ ) of the
bounding box of 6∗ is calculated:

3= (8∗, 6∗) =
√(

G
(1)
8∗ − G6∗

)2
+

(
H
(1)
8∗ − H6∗

)2
(8)

Figure 3. Relationship identification strategies to ad-
dress the rule “Never operate a grinder near face”.

If the grinder is close enough to the neck, then the
relationship between the grinder and the face of individual
is created:

2
5 024

8∗↔6∗ =

{
“=40A” , 8 5 3= (8∗, 6∗) < V8∗↔6∗
#/� , >Cℎ4AF8B4

(9)

where V8∗↔6∗ is the reference threshold calculated based
on the Euclidean distance among detected neck keypoint
(body parts 1 in Figure 1) and hip keypoints (body parts 8

and 11 in Figure 1) of 8∗ with W = 0.3:

V
5 024

8∗↔6∗ = max(
√
(G (1)
8∗ − G

(8)
8∗ )2 + (H

(1)
8∗ − H

(8)
8∗ )2,√

(G (1)
8∗ − G

(11)
8∗ )2 + (H

(1)
8∗ − H

(11)
8∗ )2) · W

(10)
and 2

5 024

8∗↔6∗ indicates the connection to create the re-
lationship between the face of 8∗ and 6∗ as a se-
mantic phrase ( 5 024, 2 5 024

8∗↔6∗ , 6
∗) (e.g., the relationship

( 5 024, =40A, 6A8=34A) is created in Figure 3)

3.1.3 Scene information representation

Based on the semantic phrases established by
individual-object relationship analysis, we generate a
scene graph for image information representation for each
captured frame from on-site surveillance cameras. An
example is illustrated in Figure 4: on-site image (Fig-
ure 4(a)) is identified and transformed to semantic phrases
triplets (Figure 4(b)), and coded in a scene graph� (+, �)
(Figure 4(c)), where + is the set of vertices to rep-
resent the objects in the semantic phrase triplets and
� =

{
{`, a} : (`, a) ∈ +2, ` ≠ a

}
is the set of edges to

represent the relationships in the semantic phrase triplets.

3.2 Automated reasoning for hazards identification
3.2.1 Regulatory Information Representation

To represent regulatory Information from natural lan-
guage sentences, we have proposed a textual informa-
tion representation and transformation method to encode
the regulatory rules into the graph structure [15]. We
first decompose and transform the regulatory rules to se-
mantic phrases which are are defined as a triplet (e.g.,
(object1, relation, object2)). “object1” or “object2” is
subjected to a particular ontology in regulations, which
can be a “personnel” (e.g., worker) or a “thing” (e.g.,
PPE). “Relation” semantically connects objects with lim-
itations, such as geometric (e.g., beneath, in, on), and
possession (e.g., has). Let �̂ (+̂ , �̂) be the graph of the
regulatory rules, where +̂ is the set of vertices to rep-
resent the elements in the semantic phrase triplets and
�̂ = {{`, a, B, A, C} : (`, a) ∈ +̂2, ` ≠ a} is the set of
edges to represent the relationships in the semantic phrase
triplets (B and A are the connections to represent an en-
tity relationship and an entity status, respectively. C is the
edge property to indicate the type of the requirements:
obligation rule or prohibition rule).

3.2.2 Frame-level reasoning for hazards identifica-
tion

Frame-level reasoning for hazards identification is per-
formed by checking compliance of prohibition and obli-
gation regulatory rules based on graph structure analysis
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(a) On-site image. (b) Semantic phrases triplets. (c) Scene graph � (+ , �) .

Figure 4. An example of on-site image and its scene graph

between � (+, �) and �̂ (+̂ , �̂). �̂ (+̂ , �̂) consists of both
prohibition and obligation regulatory rules. Thus pruning
is first performed to extract the prohibition regulatory rules
subgraph �̂%

(
+̂% , �̂%

)
and the obligation regulatory rules

subgraph �̂$
(
+̂$, �̂$

)
(see Figure 5).

Prohibition regulatory rules reasoning is performed
based on compliance checking between the scene graph
� (+, �) of on-site image and the prohibition regulatory
rules subgraph �̂%

(
+̂% , �̂%

)
. If an edge ˆ4% of �̂% exists in

� , which means a prohibition entities relationship exists in
the on-site image scene, then ˆ4% is extracted as a violated
regulatory prohibition rule and the on-site image scene is
hence identified as hazardous.
Obligation regulatory rules reasoning for hazards identi-

fication of the on-site image is performed based on the iso-
morphism between � (+, �) and �̂$ (+̂$, �̂$). In graph
theory, an isomorphism is a mapping between two graph
structures of the same type that can be reversed by an in-
verse mapping. � (+, �) is isomorphic to �̂$ (+̂$, �̂$),
if there exists a bĳective function 5 : + → +̂$ such that
∀D, E ∈ +, (D, E) ∈ � ↔ ( 5 (D), 5 (E)) ∈ �̂$, which is
denoted as � � �̂$ [18]. Otherwise, � (+, �) is non-
isomorphic to �̂$

′(+̂$, �̂$) and the violated obligation
regulatory rules �$ = {(`, a, g) ∈ �̂$, (`, a, B, A) ∉ �}
from the on-site image are identified.

3.2.3 Sequence-level reasoning for hazards identifica-
tion

Frame-level hazards identification results are subject to
misidentification due to environmental or occlusion rea-
sons, thus we dynamize the graph structure which repre-
sents the scene information to perform verification of cur-
rent frame’s identification results with the identification
results of historical frames as sequence-level reasoning.
For each node of the scene graph the set of identifica-
tion results of the previous : frames is saved as “window
states”, which is updated dynamically in the form of “first-
in-first-out”. The identification results of the current frame
is determined by the “window states”: for each “window

states” we identify the state with the majority as the final
identification results of the current frame according to the
“winner-takes-all” (WTA) principle (Figure 6). As an ex-
ample, Figure 6(c) visualizes the sequence-level reasoning
result of image sequence Figure 6(a).

4 Experiments and results
4.1 Regulatory rules

To demonstrate the validity of the proposed approach,
we selected five regulatory rules to perform the experi-
ments:

1. “Wear a hard hat.”
2. “Wear a dust mask when operating a grinder.”
3. “Wear a safety glasses when operating a grinder.”
4. “Always use two hands when operating a grinder.”
5. “Never operate a grinder near face.”

As demonstrated in Figure 7, a graph �̂
(
+̂ , �̂

)
is gen-

erated to represent all linguistic information of these five
regulatory rules.

4.1.1 Ddatasets

To create a training dataset for object detection, we col-
lected images of hard hats, dust masks, safety glasses,
and grinders from two sources: real-world images and
web-mined images . Real-world images were obtained us-
ing a SONY U5000 digital camera at six different places
(including construction sites, school campus, and exper-
imental rooms) under different environmental conditions
(e.g., level of illumination, visual range) and the obtained
images are all 1440 × 1080 in resolution. Web-mined im-
ages were retrieved by search engines using a web crawler.
The resolution of these collected web images ranges from
150×150 to 4896×3672. A total of 6029 images contain-
ing 12265 objects were collected and annotated as listed
in Table 1.
Furthermore, to address compliance with these five reg-

ulatory rules, a demo video on the operation of the grinder
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(a) (b) (c)

Figure 5. (b) �̂$
(
+̂$, �̂$

)
and (c) �̂%

(
+̂% , �̂%

)
are the obligation and prohibition regulatory rules subgraph

extracted from (a) regulatory rules graph �̂ (+̂ , �̂ , �̂).

Figure 6. Sequence-level reasoning for hazards identification

was captured as the testing dataset. The demo video con-
sists of 2745 frames and includes both normal and haz-
ardous operations (one-handed and near-face operations).

4.2 Implementation Details

We build the YOLOv4-CSP model using PyTorch and
initialize the model based on the pre-trained weights on
theMSCOCO2017 object detection dataset [19]. We train
the model for 100 epochs by stochastic gradient descent
(SGD), and throughout training we use a batch size of 8, a
momentum of 0.9 and a decay of 0.0005. The learning rate
is initialized to 14−2 and is decreasing following the cosine
function. All experiments are performed on a machine
with Intel Core i7-7820X (8 cores, 3.6GHz), 32GB DDR4

SDRAM RAM, NVIDIA GeForce GTX 1080 Ti GPU
(11GB of GDDR5X memory and 3584 CUDA cores).

4.3 Experimental results

The sequence-level hazards identification results are re-
ported in Figure 8, where the values of windows size : are
considered to be 1 (without windows states analysis), 10,
20. When using window states for time-series analysis,
sporadically misidentified frames can be well corrected.
As shown in Figure 8(b) and Figure 8(c), the proposed ap-
proach achieves significant improvements for hazardous
operation of grinder near face (95.47% → 96.28% →
96.36%), improper operation of grinder with single hand
(97.74% → 98.79% → 98.26%), and proper use of dust
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Table 1. Information of collected training dataset
Number of real-world image samples Number of web-mined image samples Total

Hard hat 3003 1322 4325
Dust mask 3099 186 3285

Safety glasses 2180 115 2305
Grinder 2005 355 2360
Overall 10287 1978 12265

Figure 7. The graph generated for regulatory infor-
mation representation.

masks (96.04%→ 97.94%→ 97.98%) and safety glasses
(84.24% → 85.74% → 85.78%) 1, which demonstrates
the effectiveness of the proposed approach for on-site oc-
cupational hazards identification.

5 Conclusion

This paper proposes a graph-based time series analysis
framework to dynamically integrate visual and linguis-
tic information for on-site occupational hazard identifi-
cation. Firstly, a vision-based scene information under-
standing approach is introduced to process on-site images
via a combination of deep learning-based object detection
and individual detection. Subsequently, a novel dynamic
graph structure to represent time-series information for in-
tegrated reasoning of hazards identification using window
states analysis. The experimental results demonstrate that
the proposed approach can effectively identify the hazards
of grinder operation and facilitate improved safety inspec-
tion and supervision. Further extensions of this work will
be investigated to improve the performance of visual infor-
mation representation by introducing monocular 3D entity
extraction.

1When operating the grinder near face, both dust masks and safety
glasses are not visible in the frame image due to occlusion, therefore
these frames are not included in the accuracy calculation for the proper
use of dust masks and safety glasses
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(a) k=1 (w/o windows states analysis)

(b) k=10

(c) k=20

Figure 8. The sequence-level hazards identification
results (In the vertical axis, 1 indicates a safe state,
0 indicates a hazardous state, and -1 indicates N/A).
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